ポケットコンピュータ、RBIO-1接続マニュアル

RB-PCIF、簡易ケーブルご 使用の方にお願い

1、RB-PCIFケーブルは、ポケットPCと、RBI0-1を接続して、外部制御の学習を行う目的で設 計された簡易ケーブルです。業務用途等、一般 用途には使用しないでください。この様な用途 には、シャープ製純正ケーブル「CE-T800」を ご利用ください。

2、RB-PCIF ケーブルはRBI0-1 専用品です。 RBI0-1 以外の機器には接続しないでください。 他の機器に接続した場合、ポケットPCを破損す る恐れがあります。

概要

説明書はシャープ社ポケットPC、PC-G850Vに RBI0-1を接続した状態での動作に基づいていま す。

ポケット PC のシリアルポート (11 ピン端子の

SIOモード)と、RBIO-1を接続する事により、 ポケットPCからRBIO-1をコントロールする事 ができます。接続には、弊社RB-PCIF簡易ケー ブルまたはシャープ社の純正ケーブルを使用し て行います。制御用のソフトはポケットPC内蔵 のC言語を使用します。また一部機能制限があ りますが、BASICも利用できます。 基本的に機械語(アセンブラ)も利用できるは ずですが、ポケットPCの説明書に、機械語から シリアルをコントロールする方法が記載されて いないため、操作できません。

接続

純正ケーブルをご利用場合

ポケット PC 側の接続は、ポケット PC の取扱説 明書内に説明があります。ケーブルの反対側、 機器接続用の232C コネクタは、25P オスとなっ ています。一方、多くの DOS/V マシンでは 9P コ ネクタを採用しています。RBI0-1 も 9P コネク

RBI0-1 とポケット PC を CE-T800 で接続する場合

タとなっています。25Pから9Pには、変換コネ クタが利用できます。さらにCE-T800ケーブル のコネクタ配列は、他のWindowsマシンの様な 本体を接続するための配列(対DCE用)となっ ています。モデムなどの受身になる機器(DTE 機器)を接続する場合はヌルモデムと呼ばれる 送信線と受信線を互いに反転(クロス結線)さ せるアダプタが必要になります。

RBIO-1もモデムと同じ種類の端子配列になって いますので、純正ケーブルでポケットPCと接続 する場合はヌルモデムが必要となります。

25Pから9Pへの変換とヌルモデムの種類により、次の3種の接続法が考えられます。

・25P メスと25P オスが付いたヌルモデムに25P メスから 9P メスに変換するアダプタを直列接 続する。

・25P メスから 9P メスに変換するアダプタに 9P オスと 9P メスが付いたヌルモデムを直列接続 する。

・ヌルモデム機能の付いた25Pメスから9Pメス に変換するアダプタを使用する。

* ヌルモデムはクロスアダプタやリバースアダ プタと呼ばれる場合もあります。 弊社 RB-PCIF 簡易ケーブルを使用する場合 ポケット PCの取扱説明書を参照して、11 ピン コネクタのカバーを外してください。

ケーブル端に基板がある側がポケットPCと接続するコネクタになります。

基板の端にある 11 本のピンがポケット PC と接 続するコネクタになります。 等間隔にならんで おり、曲がったピンが無いか確認してくださ い。

接続は基板に部品が実装され、番号が印刷さて いる面を上にしてポケットPCの11個の穴と基 板端にある11本のピンが一致しているか確認 の上、挿入してください。

RBIO-1とポケット PCを RB-PCIF で接続する場合

11 ピン全てがポケット PC 側の穴に入れば接続 完了です。1 本ずれた状態では、通常挿入でき ませんが、無理に強行すると端のピンを曲げて 挿入されてしまいます。

RBI0-1 側の接続はケーブルの他方、9P メスを RBI0-1 のシリアル端子に接続するだけです。 (専用ケーブルですので、ヌルモデム等のアダ

(今周) クルとすのと、 クルビアム寺のアク プタは必要ありません)

ポケット PC での設定

シリアル通信では接続機器の通信条件に合わせ てポケットPCの初期設定を行う必要がありま す。RBIO-1の通信条件はRBIO-1取り扱い説明 書の3ページにある「ターミナル設定条件」の 表を参照してください。

設定すべき項目は、伝送速度、ビット長、パリ ティー、フロー制御です。ポケットPCではTEXT キーに続いてS、さらにFを押す事で、しばら くすると、設定状態が表示されます。

ポケット PC では設定項目がアルファベットで 表示されます。RBI0-1 との対応は、

伝送速度 baud rate (9600bps)

ビット長 data bit (8bit)

パリティー party (none)

RBIO-1の設定条件にストップbitはありません がポケット PC 上の stop bit の項目は1に設定 してください。

残りの end of line =と end of file =、line number =の項目はそのままで結構です。

最後のflowの項目はRBIO-1ではフロー制御の 項目に該当します。ポケットPCではRS/CSに設 定してください。

シリアルでコントロールしよう

ポケットPCのシリアル信号(以下SIO)のブロッ クは下の図の様になります。

ポケットPCからの送信では、アプリケーション の送信データ 送信バッファー SIOデバイス による直列変換 ケーブルの順に送られて行 き、最後に相手機器に到着します。

ー方、相手機器がポケットPCに対して送信され て来たデータは、送信とは逆の手順により、 ケーブル SIOデバイスによる並列変換 受信 バッファー アプリケーションの順に伝わって 行きます。

ここでのアプリケーションは BASIC やC で書か

れたプログラムです。

直列変換は、バイトデータを順次ビットデータ に分解して送り出す操作です。これにより、1 本の電線でバイトデータを送信する事ができま す。一方並列変換は受信用の変換で順番に送ら れてきたビットデータを元のバイトデータに変 換する作業を行います。

ここから先はRBIO-1対ポケットPCに限定した 説明です。と言うのも、相手機器の仕様によっ て通信内容や振る舞いが異なるからです。

細かい理屈は別にして、データ(文字または文 字列)は指定の手順に従ってBASIC文を記述す る事でシリアルデータに変換されて相手機器に 送る事が出来ます。

RBI0-1 のリレーをコントロールするには、SIO デバイスに対して制御文字を送信するれば良い 事になります。

ポケット PC の BASIC から

10:0PEN " COM1: "

20:PRINT #1, ""

30:PRINT #1, "PCT0005 "

(行番号の後の:は入力不要です LIST を出すと 勝手に付きます)

20番と30番に PRINT 文がありますが、30番が 本来の RBIO-1 に対する動作指示です。20番は 「おまじない」です。ここでは、そのまま入力 してください。

(「おまじない」の解説は、この項の最後にあり ます)

RBIO-1と接続が完了していれば、RUN してくだ さい。

RBI0-1の一番左のリレーが0.5秒間 ON し、リ レー動作確認用の LED が0.5秒間点灯したはず です。

ー瞬RBIO-1のエラーが点灯する場合もありま すが、動作すればOKです。動かない場合は接続 およびBASIC文を点検してください。

10番のステートメントは、SIOを使用する旨を 宣言しています

30番でRBI0-1に指令を送り出していますが、指 令の中身は""の中にある PCT0005 です。PCT0 は0番リレーに対する、タイマー付きのON指令 です。

続く005で0N時間を0.5秒として指示していま す。

PRINT#1は画面に出力するPRINTと同じですが、

出力先が#1 デバイス、ここでは10番で宣言したSI0になる点が異なります。 うまく動作した場合は、BASICを少し改造してみましょう。

追加として...

40:FOR I=0 TO 2000 50:NEXT 60:GOTO 30

40 番と50 番は時間つぶしです、この2行を実 行するのに2秒程度かかります。60番のGOTOで RBI0-1 に ON 指令を出していた行に飛びます。 RUN すると RBI0-1 に対して、約2秒間隔で0.5 秒間 ON する指令が永久に送信される事になり ます。結果的に RBI0-1のリレーがカチカチON/ OFF 動作をする事になります。

しばらく、このまま、走らせておいてください。 20回位 0N/OFF 動作した所で動作が停止してし まったと思います。

この現象は、シリアル受信用のバッファーが満 杯になってしまったために起こる現象です。 もう少し詳しく見ていきましょう。

30 番の PR INT#1 文が送り出した指令文字は RBIO-1 に届きます。RBIO-1 はコマンドが正し い場合、OK の文字をポケット PC に対して送り 返します。OK の文字はポケット PC の SIO で受 信され、受信バッファーに溜まります。

(前ページの図では下半分の部分です) ところが、実験に使用した BASIC 文内には、溜 まった文字(ここではOKの文字)を読み出す命 令を記述していません。このままでは、いつか 受信用のバッファーが満杯になってしまいま す。

ここに何らかの工夫が無いと、相手が送信した データが、受け取る前に消えて無くなります。 そこで導入されたのがフロー制御です。

ポケット PC の SIO 設定で flow = の項目を RS/ CS に設定しましたが、この RS/CS は制御専用の 線を使って受信バッファーが溢れそうになると 相手側の送信を停止させて、溢れるのを防ぐ機 構です。

専用の線(ハードウエア)を利用するため、フ ロー=ハードと表現される場合もあります。 シリアルデータを送受信するだけなら2本の電 線があれば、足りますが、フロー制御が入るた め、もう2本の電線が必要になります。 実際、ポケットPCのシリアルコネクタには4本 の信号線が出ています(共通線があるのでもう 少しコネクタのピン数は多い)

さて、RBI0-1のリレー ON/OFF が停止したのは フロー制御とどうかかわっているのでしょう か。実は、RBI0-1は、送信データ(この場合OK の文字)を送り出せずに、フロー制御が解除さ れるのを待ち続けているのです。

ここで、さらに、実験を行います。

走っている BASIC を停止させてください。そし て、再度 RUN してください。

しばらく時間が掛かると思いますが、リレーの ON/OFF が再開されます。

これはBASICがRUN命令を実行する際にバッファーの中を空にするためで、空きになればフロー制御が解除され、RBI0-1の送信が再開、動作も再開される事になります。

今回の実験の様に、RBIO-1に送信した命令の結 果を調べる必要のないアプリケーションでは、 フロー制御はじゃまな存在になります。

確実な動作を保障するには,RB10-1が応答する 文字を受信して検査すべきですが、実際には送 るだけのコントロールでも、さほど問題は発生 しません。

フロー制御を止めるには二つの方法がありま す。

1:ポケット PC 側で、フローを切る。

ポケット PC の SIO 設定で flow =の項目を none に設定する事で、受信バッファーが溢れても、 相手を送信禁止にしません。

受信バッファーから溢れた文字は捨てられる事 になります。先の実験方法でもflow =noneの 効果を確かめる事ができます。

2:RBIO-1の返答を止める。

RBIO-1は通常状態では、命令に対して必ず返事 を送信します。

これを禁止するには、RBI0-1使用説明書の10 ページ、特殊モードを利用してS4パラメータの 内容を1に書き換える事で行う事ができます。 ただ、設定にはターミナルが必要になります。 Windowsマシンをお持ちの方はRBI0-1と繋いで 設定できますが、環境をお持ちで無い場合は、 次の章、簡易ターミナルを作るを参照してター ミナルを製作して、RBI0-1の設定を行ってくだ さい。

それでは、フロー制御を止めたり、RBIO-1を設 定替えせずに、利用する方法が無いのでしょう か。

正しいやり方は、RBIO-1が送り出す文字列を BASIC文内で読み出す事です。

そのために BASIC には INPUT (INPUT#)や LNINPUT# の命令があります。

これを使えば、受信バッファーに溜まった文字 を読み出す事ができそうです。

受信文字を確認するためPRINT文も一緒に挿入 する事にして..

32:LNINPUT#1,D\$ 34:PRINT D\$ 36:LNINPUT#1,D\$ 38:PRINT D\$

を追加してください。

2回入力を追加したのは、RBIO-1は一つの命令 に対して2行分の返答を行っているためです。 RUN すると、今度は動き続ける事が確認できる と思います。また画面には1行毎にOKの文字が 出力されていると思います。

ー見成功したかに見えますが、ちょっと問題を 含んでいます。

動作中に RBIO-1の STOP ボタンを押して見てく ださい。

STOPボタンは、動作中の全てのリレーをOFFに して「RBIO-1 I/O Control Ver1.0」をシリア ル線に送り出す、緊急停止ボタンです。

もしリレーが ON した直後なら、STOP ボタンで リレーが OFF するのが判ります。そして、実行 中の画面には RBI0-1 の文字が出ます。

さらに STOP を押してください。

元々実行中はOKの文字が表示され、動作の度に スクロールされて消えて行きますが、この中に 混じる RBIO-1の文字が出るタイミングが STOP を押す度に遅れて行くのが判ります。

10回程度STOPを押すと停止してしまいます。 ここで起こっている現象を整理すると以下の様 になります。

BASICの30番で0.5秒間0Nにする指令をRBI0-1に送る

RBIO-1は2行の返答を返す

追加した32番と36番の入力文がRBIO-1の返答 2行を読み取る。

ここまでは問題ありません。返答2行に対して、読み出し2行。

しかし RBIO-1 で STOP ボタンを押すと、

命令が来なくても、RBIO-1...の文字列を送り

出します。

この文字列は予定外の行になります。

すなわち、この瞬間だけ、3行の返事に対して 2行しか読み出しが行われない事になります。 1行分が読み出してもらえずに受信バッファー に残ります。しかしBASICの実行が次の指令タ イミングになると残った1行と新しい2行の内 の最初の1行を読み出す事になります。

このまま、永久に1行分が順次残り続けます。 残った1行が読まれるのは次の操作指令の時で すので、この時点で2秒の遅れが出た事になり ます。

さらに、STOPを押し重ねると押す度に遅れて読 まれる行が増え続ける事になります。

これは、倉庫に商品を積み上げると同じで、売 れる量より、仕入れる量が上回ると、倉庫に在 庫の山が増え続け、売り出す商品の日付が段々 古くなってしまうと同じ理屈です。

最終的に停止したのは、受信バッファー内に余 分な行がたまったため、フロー制御が働いて、 RBI0-1 が送信を止めたためです。

それでは、余分なLNINPUT#1の行を挿入すれば どうでしょうか。

実験すれば判ると思いますがすぐに停止してし まいます。

今度は受信2行に対して、読み出しが3行にな り、BASICは3行目のLNINPUT#1に文字が到着 するのを待ち続ける事になります。

しかし、RBIO-1には指令を送らない限り、返答 が得られないため、この時点で永久停止になり ます。

さらに、読み取りは行単位の制約があります。 相手が必ず、行としての要件を満たしていない と、BASICが行として認識できない事になりま す。

結論として、BASIC ではSIO の送信と受信の双 方向を同時に行うプログラムは、かなり制限を 受ける事になります。

これは、ポケットPCのBASIC仕様上の問題なの で簡単には回避する方法がありません。

通常の PC 用の BASIC には、シリアル受信バッ ファーに溜まった文字の個数を調べる命令や1 文字単位の読み出し機能があり、溜まった事を 調べた後に読み出し操作が行えるので、この様 なずれが発生する事を避ける事ができます。

もともとBASICは対人間用として会話形式の入 出力を提供する様な仕様で製作された言語で す。入力を人間が行う場合は、表示画面に対し て柔軟に操作できるため、問題は起こりませ ん。しかし、相手が融通の利かない機械の場合 は、相当な配慮を必要とします。

*おまじないに付いて

ポケット PC の SIO は他の 11 ピン用のデバイス (PIO など)と共通の端子に配置されています。 BASIC などでSIOの OPEN 命令が入って、初めて、 端子に割り当てられた機能が有効になります。 しかし、SIO機能が働き出す前に、すでにRBIO-1 が接続され、電源も投入されていますので、 RBIO-1 には不要な文字が受信されています。

ー回目の改行は不要な文字に続けて改行を送る 事で、RBIO-1が受信している文字(この場合は 不正な文字)を命令として実行させています。 当然意味の無い文字が命令にされるのですか ら、エラーとなります。

初回がエラーですが、次の命令から正常に処理 できる様になります。

この様な操作は OPEN 直後の一回だけ行えば実 行中は必要ありません。また OPEN した後から RBIO-1の電源を投入する場合は、不正な文字を 受信しないため、おまじないは不要になりま す。

簡易ターミナルを作る

RBIO-1 は PC の拡張として制御する以外に、直接、人間が操作した場合でも、なるべく分かりやすいコマンド体系としています。

ポケット PC から、RBIO-1を人手で操作するに は、

1:キー入力がればそれを読み出し、SIOに送 り出す。

2:SIOに受信文字が到着すればそれを読み出し、画面上に表示する。

3:以上の操作を停止させる事なく、永久に続ける。

この様な機能をダムターミナル(又は単にター ミナル)と呼びます。

Windows をお持ちの方なら、ハイパーターミナ ルを使った事が有ると思います。

ポケットPCで作るターミナルはそれを極限ま で簡単にした物です。

要求は非常に単純ですが、前の章で説明した様 に、BASICではSIOから受信した時のみ読み出 す操作が困難なため、単純には製作できませ

ん。 ここではC言語を使って製作する事にします。 C言語には、キーが押された事を調べる kbhit とSIOの受信バッファーに文字が入っているか を調べる feof の命令(関数)があります。 これらを使って、データが用意されている時の みキー入力や、SIOの読み出しを行えば、入力 停止にならないプログラムを作る事ができま す。 本来なら kbhit()でキー押しを検出した場合の みgetchrを使って押されたキーのコードを1 文字づつ取得するのが理想です。しかし、PC-G850Vでは関数がうまく動作せず、一行まとめ てキー入力を行うgetsを使用しました。この 部分は BASIC の INKEY\$ の考え方の方がすっき りしています。 10 main() 20 { 30 int *f; 40 char c[50]; f=fopen("stdaux1", "a+"); 50

60 for(;;) { 70 if (!feof(f)) { 80 printf("%c",getc(f)); 90 } 100 if (kbhit()!=0) { 110 gets(c); fprintf(f, "%s¥n", c); 120 130 while(kbhit()); 140 } 150 } 160 fclose(f); 170 }

番号50はSI0を使用する宣言です。160番でSI0 の使用終了を行っていますが、それより前に永 久ループ(60番の for 文) があるため、ここが実 行される事はありません。130番は行最終の改 行キーが放されるのを待つループです。

1行まとめて入力する形式のため、一度入力を 始めると、最終の改行キーを押すまで、RBIO-1 からのメッセージを表示できません。

入力中は画面にカーソルが出るので、判断でき ます。

コンパイルしてエラーが出なければGで実効さ せてください。

最初は入力状態になって画面上にカーソルが出

ると思います。

(実行用に押したGキーを放す前にプログラム が動作してしまうためで、この時点で最初の kbhit()はキーが押された物として入力に入っ ています。Gを押す時間が短いと入力に入らな い場合もあります)

最初は改行を押して前章の「おまじない」に相 当する作業を行ってください。当然ながら画面 にはERRORが表示されると思います。

改行入力で、キー入力(行入力)からも抜け出 せたため、画面上のカーソルが消えていると思 います。

この状態でRBI0-1のSTOPボタンを押してみて ください。画面にはRBI0-1 I/0...の文字が表 示されます。

後は色々な指令をRBIO-1に送信してみてくだ さい。PCDJUと指令を送るとリレーが一つ置き に点灯します。

永久にループするソフトですので、停止はポ ケット PC の BREAK キーで行ってください。

RBIO-1の設定パラメータを書き換える 前のフロー制御を回避するための方法にある様 にRBIO-1には動作時の振る舞いを設定できる 機能があります。

実行前にRBIO-1取扱説明書の9ページ以降、特殊モードの項を参照してください。

例として、RBIO-1のSTOPボタンを押した際に 出力される文字列「RBIO-1 I/O C...」を出力 しない様にしてみましょう。

1:製作した簡易ターミナルを起動します。

2: 一度 RBIO-1 の電源を抜きます。

3:RBIO-1のSTOPボタンを押しながら、電源 を挿入します。

4:RBIO-1上の赤(NG)と緑(OK)の表示が同時に点灯すれば準備完了です。

もし、緑だけ点灯する様なら、再度2からやり 直してください。

5:ポケットPCで「S0=1」をキー入力して、改 行キーを押します。

6:RBI0-1の緑ランプだけ点灯すれば、受け付 け完了です。赤が点灯してしまった場合は、 RBI0-1のSTOPボタンを押して赤、緑ランプの 同時点灯状態にした後、5番からやり直してく ださい。

7:RBIO-1の緑ランプが点灯している状態で STOPボタンを押す事で設定が記憶されます。 8:RBIO-1の電源を一度抜き、再度入れてくだ さい。 以上で設定が完了しました。

RBIO-1のSTOPボタンを押しても、ポケットPC 上には、何も表示されなくなったはずです。 ためしに、PCとタイプして改行ボタンを押して ください。

OKの文字がポケットPCに表示されるはずです。 STOPを押した場合に出力されるメッセージを元 の様に出力させるには、前ページの操作を行 い、「SO=0」を設定してください。

おまけのデモ

端から順に動作位置が移動します。

SIOの送受信を停止しないループ上で行っていますので、多少複雑になっています。

「おまじない」を記述していませんので、走ら せた直後の1回目だけエラーが出るだけで以後 は正常動作します。

(すぐに次の指令が送られるため、ERRORが出て もほとんど影響ありません)

永久にループするソフトですので、停止はポ トット PC の BREAK キーで行ってください。

おまけのプログラムではRBIO-1からの返答は、 単に画面に表示しているだけです。

しかし、ループを停止させずに読み取る考え方 は生かされており、RBIO-1からの返答の読み出 しは、受信バッファーに溜まった事を検査して 行っています。

意地悪をして、RBIO-1のSTOPボタンを押して も、動作中のリレーはOFFしますが、返送され た文字を画面に表示し、動作自体は影響なく継 続されます。

より、完成度の高いソフトにするためには、 RBIO-1から受信した文字を文字列として組み立 て、OKの文字が正しく送られてきているかを検 査する必要があります。

```
10 main()
20 {
     int a,b,x,y1,y2,*f;
30
     f=fopen("stdaux1","a+");
40
     for(b=0,x=0;;x++) {
50
60
       if (!feof(f)) {
70
         a=getc(f);
80
         printf("%c",a);
90
       }
100
        if (x>100) {
110
          y1=0; y2=0;
120
          if (b>=5)
130
            y1=1<<(b-5);
140
            else y2=1<<b;
150
             fprintf(f, "%s%c%c¥n", "PCD",
y1+64,y2+64);
          x=0; b++;
160
170
          if (b>9)
180
            b=0;
190
        }
```

作および与える影響に付いて、共立 電子産業㈱およびシャープ㈱は一切 保証いたしません。

本マニュアルに記載された内容の動

本マニュアルの無断転載を禁止しま す。

*当マニュアルの補足等は下記URLにて公開します http://www.kyohritsu.com/CATALOG/KIT_CTRL/rbio1.html

本製品のお問い合わせは 〒556-0004 大阪市浪速区日本橋西2-5-1 共立電子産業株式会社、ケイシーズ担当までお願いします TEL (06)6644-0021 FAX (06)6644-0824 Email:keiseeds@kyohritsu.com Copyright 2002 (C) 共立電子産業株式会社

200

210

220 }

}

fclose(f);

* KEISEEDS の新製品ニュースは共立電子のホームへ。ーシ・「http://www.kyohritsu.com」でご覧いただけます。